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ABSTRACT: This work developed a Matlab app called TOWAN-2GROUP based on the two-group diffusion 
theory of spherical coordinates used to evaluate the critical radius and flux profile in a spherical reflected 
reactor using nuclear data from natural uranium/ graphite system as a case study. In addition, response 
surface methodology (RSM) was used to investigate the effect of four nuclear parameters in the core 
(diffusion length, age-thermal, fast diffusion coefficient, and thermal diffusion coefficient) of the critical 
radius. The analysis was carried out using ANOVA. The ANOVA results show that all the four parameters and 
some interaction between them are statistically significant. Furthermore, the sensitivity analysis carried out 
on the regression model showed that diffusion length is the most sensitive parameter of the critical radius 
amongst the four parameters.  

Keyword: Diffusion equation, neutron flux, critical radius, response surface methodology, fast flux, thermal flux. 

Abbreviations: RSM, Response surface methodology; GAEM, Generalization of the analytical exponential model; 
DOE, design of experiment.  

I. INTRODUCTION 

Criticality evaluation is essential in the design and 
operation of a nuclear reactor as it signifies the stable 
condition of the reactor. This condition is expressed by 
an effective multiplication factor (keff) which is the ratio of 
the number of neutrons in the reactor in one generation 
to the number of neutrons in the preceding generation 
[1- 3]. The process of obtaining the multiplication factor 
(keff) involves splitting energy-dependent diffusion 
equations into a finite number of groups to obtain multi-
group diffusion equations which are second order 
coupled differential equations; It should be noted that in 
a practical reactor design, numerical approaches are 
usually employed as analytical solutions are non-
existent for both complex geometry and large groups. 
However, for few groups and simple geometries, 
analytical solutions are applicable.  For instance, 
Arzhanov [4], solved two-group diffusion equations in a 
spherical reflected reactor to evaluate flux distribution. 
The diffusion equations were solved using the method 
of trial function and appropriate boundary conditions to 
obtain flux distribution throughout the system.  

Nahla & Al-Ghamdi [5] solved two-group reactor 
kinetics with one-group delayed neutrons in a three-
dimensional homogeneous reactor using Generalization 
of the Analytical Exponential Model (GAEM). Ceolin et 
al. [6], solved a time-dependent multi-group neutron 
diffusion equation in a heterogeneous slab reactor by 
discretizing the global domain into sub-domains which 
are homogeneous. The reactor kinetic equation is then 
solved for each domain by Taylor expansion series. 
Theler [7] solved multi-group neutron diffusion equations 

over an unstructured grid using finite element and finite 
volume discretization method. 

Process optimization is essential for any engineering 
design. It involves adjusting the values of input 
parameters in order to optimize certain output 
parameters without violating the constraints placed on 
the system. In recent times, researchers have employed 
Response Surface Methodology (RSM) to optimize 
different processes such as material removal rate of 
hybrid aluminum metal matrix composite [8] and Aerobic 
Granular Sludge at high temperatures [9]. Although, 
there are limited works on the application of RSM to 
nuclear reactor design. Among the few, Zhang et al. [10] 
used RSM to optimize the position of control rods in a 
cylindrical pressurized water reactor. The positions of 
four control rods were taken as input variables while 
power peak factor (Pmax), maximum temperature (Tmax), 
and entropy production (Stotal) were taken as response 
variables. The result showed that the positions of control 
rods have a great influence on these parameters. 
Furthermore, the optimized value of these control rod 
positions showed that the Pmax, Tmax, and Stotal were 
reduced by 23%, 8.7%, and 16%, respectively. 

Although there are a number of commercial codes 
available for neutronic analysis, however, these codes 
are not accessible to developing countries like Nigeria. 
Therefore, it is imperative to develop a code which can 
be used by both students and researchers in the area of 
nuclear engineering. 

Thus, this work developed a graphical user interface 
application with Matlab that estimates the critical size of 
a spherical reflected reactor and flux distribution in both 
the core and reflector. Furthermore, RSM was used to 

e
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investigate the effect of four input parameters: diffusion 
length, age-to-thermal, fast diffusion coefficient, and 
thermal diffusion coefficient on the critical size of the 
reactor. 

II. MATERIALS AND METHODS 

 The steady-state multigroup neutron diffusion 
equation is given as  

����Φ���, 	
 − �
����, 	
 − �� ���→�

�

��� � Φ���, 	
 + 
�� ���→�


���
��� � ����, 	
 + �� � �����Φ�

�
��� ��, 	
 + ����, 	


= 0                                                                                                  �1
 
where  �� is the neutron flux in group g,  �
� is the absorption cross-section in the group g, ∑ ���→�
$�  is the group transfer cross-section from 

group %, ∑ ���→�
������  is the group transfer cross-section from 

other groups to group g, �� is the fission yield appearing in group g, ��  is the average number of fission neutrons produced 
per fission,  ∑ ��� &��� is the total fission cross-section from other 

groups, and 
Sg (r, t) is the source term appearing in group g.  

In this section, we have simplified the derivation of the 
equations found in [11, 12]. Dividing the energy 
spectrum into fast and thermal groups, the two group 
diffusion equations applicable to the core and reflector 
are written as:    ��'����' − ����' + ()*+ ��'
 ��'                                        �2
 D�.∇�Φ�.�r
 − Σ�.Φ�.�r
 + p.Σ�.Φ�.�r
 = 0               �3
 ��4����4��
 − ���4
 + �4�→�
��4��
 = 0                         �4
 ��4����4��
 − ��4��4��
 + ��4�→���4��
 = 0               �5
 
 

By making ��' the subject of the formula in Eqn. (2) and 
substituting it into Eqn. (3), we obtained a fourth order 
differential as given in Eqn. (32). 

 ∇�∇�Φ�' − 789+9 :;+<∇9;+89+9 Φ�' − �()��
;+89+9 Φ�' = 0                   �6
 
Eqn. (6) can be written as: 

��� + >�
��� − ?�
��' = 0                                                �7
 
where  

μ� = − B89+9 :;+;+89+9 C ± EB89+9 :;+;+89+9 C� + 4 B(∞��;+89+9 C
2                        �8
  

  λ� B89+9 :;+;+89+9 C ± EB89+9 :;+;+89+9 C� + 4 B()��;+89+9 C
2                                 �9
 

µ
2
 and λ

2
 are called the principal and alternate bulking.

 

Using principal bulking, the diffusion equation can be 
written as:                         ∇�Φ�' + >�Φ�' = 0                                �10


 
The general solution in spherical coordinate is given as:                            Φ�' = IJ KLM N44 + OJ .PK N44                              �11
 
Since the flux must be finite at � = 0, it implies that Q� = 0, thus Eqn. (11) reduces to                                 Φ�' = IJ KLM N44                                     �12


 Since fast and thermal flux have the same profile, they 
will only differ in amplitude. Thus, the thermal flux can 
be written as:

                              Φ�' = R� sin μ ��                                     �13
 

The ratio of A2 to A1 is called the principal coupling 
coefficient and is given by Eqn. (14). 
                               R�R� = V'Σ�'���'µ� + Σ�'
 ≡ ��                       �14
 
Using alternate bulking and following the same process, 

the general solution for fast flux becomes 

Φ�' = R�∗ sinh λ �� + Q�∗ Z[\ℎ ? ��                                        �15

 

Since the flux must vanish at � = ∞ and Q�∗ = 0, Eqn. 
(15) reduces to Eqn. (16). 

��' = R�∗ sinhλ ��                                                              �16
 
Therefore, the thermal flux can also be written as: 

��' = R�∗ sinh λ ��                                                          �17

 

Alternate couple S2 is given as: 

R�∗R�∗ = V' ��' ��'^�1 − _�'� ?�
 = ��                                                  �18

 

The complete flux distributions for the two groups in the 
core are given as: Φ�' = R sin μ �� + Q sinh λ �� = R` + Qa                     �19
 
Φ�' = R�� sin μ �� + Q�� sinh λ �� = R��` + Q��a           �20
 
Performing the same process, the flux distribution in the 
reflector is given as: 

Φ�4 = b sinh�c + d + e − �
� = bf�                                 �21

 

��4 = ( )

r

rdTR
L
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2
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 gh KLMi JjJk�l:m:n�o
o = GZ� + SsFZ�                                       �22
 
where

 

Ss = uJkJ→9 v9kwJxk� Jj9k9                                                �23

 

A. Criticality condition 
The continuity conditions for two-group reflected 

reactor states that, at the core-reflector interface both 
the flux and neutron current density are continuous [11].  
This implies that  
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��'�c
 = Φ�4�c
                                                                     �24
 ��'�c
 = Φ�4�c
                                                                 �25
 −��'∇Φ�'�c
 = −��4���4�c
                                            �26
 −��'∇��'�c
 = −��4���4�c
                                        �27
 
Substituting the expression of fluxes into Eqns. (24) to 
(27) we have: R` + Qa − bf� = 0                                                 �28
 ��'R`y + ��'Qa − ��4bf�y = 0                               �29
 R��` + Q��a − zf� − �sbf� = 0                                      �30
 

c cD AS X D CS Y2 1 2 2
′ ′+ − ��4zf�y − ��4�sbf�y = 0         �31
 

Note that the prime denotes the first derivative of the 
function with respect to r. 
Eqns. (28) to (31) can be presented in matrix form as: 

c c r

c c r r

X Y Z A

D X D Y D Z C

S X S Y S Z Z F

D S X D S Y D S Z D Z G

1

1 1 1 1

1 2 3 1 2

2 1 2 2 2 3 1 2 2

0 0

0 0

0

0

−     
     

′ ′ −     =
     − −
         ′ ′ ′ ′− −     

    �32
 
For a non-trivial solution of Eqn. (32), the determinant of 
the matrix of the coefficient must be equal to zero as 
given in Eqn. (33). 

∆ = { ` a −f� 0��'`y ��'ay −��4f�y 0��` ��a −�sf� −f���'��`y ��'��ay −��4�sf�y −��4f�y
{ 0       �33
 

Eqn. (33) is called two-group critical determinant for the 
reflected reactor. Criticality can be achieved by either 
varying the concentration of the fuel or the size of the 
core in such a way that the critical determinant is equal 
to zero. 

B. Evaluation of flux constants 
In order to evaluate the magnitude of the fast and 

thermal flux, it is paramount to determine the constants 
A, C, F, and G. However, it is not possible to determine 
their values absolutely because they are linearly 
dependent on each other. To compute these constants, 
we usually evaluate the other three constants in-terms 
of A while A is determined by the operating power of the 
reactor. The procedure to obtain this is available in [12]. 
Their values are given in Eqns. (34), (35), and (36). 

Q = |R`}a~ ��1Z ` ′` − ��4 a ′a �                                         �34
 b= R`}f� ���' `y` − ��4 aya �                                            �35
 

z = R`}f� ��
����'��� − �s
 `y` + ��'��s − ��
aya + ��4��� − ��
 f�yf� ��

��                       �36
 
C. TOWAN-2 GROUP Code 

A Matlab App called TOWAN-2GROUP was 
developed in this study to compute the critical radius 
and flux distribution in a spherical reflected reactor 
system. The governing equations derived in this paper 
have been implemented in the developed code in the 
following manner.  

(i) The first section of the program asks the user to supply 
nuclear data. Afterwards, this data is used to calculate the 
principal and alternate bulking values using Eqns. (8) and 
(9).  
(ii) The second section evaluates the coupling coefficients 
S1, S2, and S3 using Eqns. (14), (18), and (24).   
(iii) The third section computes the values of X, Y, Z1, Z2 

using Eqns. (19), (20), (21), and (22) and their first 
derivatives with respect to r at the core-reflector interface.  
(iv) The fourth section computes the determinant function of 
Eqn. (33) and plots it over a given interval specified by the 
user to obtain the critical radius.  
(v) The last section of the program asks the user to supply 
the value of the critical radius and uses it to evaluate the 
values of coefficients (C, F, and G), and plots the flux 
profile for both the core and the reflector over a given 
interval which is supplied by the user. The major advantage 
of this code is that the computation time is much shorter as 
compared to when other iterative methods are used. 

D.  Response surface methodology 
RSM is a set of advanced DOE techniques that 

makes use of mathematical and statistical approaches 
to establish a relationship between an input variable and 
an output response. The multivariate model for the 
output variable is given as: 

� = α� + �α�
�

��� �� + �α��
�

��� ���� + �α��
�

��� ����                 �37
 
where α�,α� ,α�� , ⥂⥂ ���  are the intercept, linear term 

coefficient, the quadratic term coefficient, and coefficient 
of an i

th 
& j

th 
term respectively. This study employed the 

central composite design method to study the effect of 
four variables in the core, namely: diffusion length, age-
thermal, fast diffusion coefficient, and thermal diffusion 
coefficient of the critical size of the reactor. Each factor 
is set to 5 levels and an alpha value of 2 base on the 
number of variables and levels. In addition, a condition 
of 30 runs was defined which consist of 16 factorial 
points, 8 axial points, and 6 center points [13]. Table 1 
shows the nuclear data of Uranium/ Graphite system 
used and Table 2 shows the variables considered in 
RSM and the values associated with each level.  

Table 1: Nuclear data of natural uranium/graphite system. 

Variable Units Nat U/Graphite system 

Infinite multiplication constant  1.1 

Thermal diffusion length, core cm 15.8 

Thermal diffusion length, reflector cm 54.4 

Age-to-thermal, core cm
2 

364 

Age-to-thermal, reflector cm
2 

364 

Fast diffusion coefficient  core cm 1.11 

Thermal diffusion coefficient  core cm 0.88 

Fast diffusion coefficient  reflector cm 1.11 

Thermal diffusion coefficient in the reflector cm 0.886 

Resonance escape probability  0.9 

Reflector thickness cm 150 
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Table 2: Variables and the value associated with level used in RSM. 

Level 

Variable –2 –1 0 1 2 

diffusion length �_'
 12.64 14.22 15.8 17.28 18.96 

Age-thermal ��'
 291.2 327.6 364 400.4 436.8 

Fast group coefficient ���'
 0.888 0.999 1.11 1.221 1.332 

Thermal group coefficient ���'
 0.7104 0.7992 0.888 0.9768 1.0656 

III. RESULTS AND DISCUSSION 

A. Identification of the roots and flux profile  
Fig. 1  shows the graph of the critical determinant as 

a function of the radius of a spherical reflected reactor 
using natural uranium fuel surrounded by graphite 
reflector. The roots are determined by the zeroes of the 
function and these occur at R = 190 cm, 450 cm, 680 
cm, 940 cm, etc. The first root also called the 
fundamental root is the critical radius of the reactor, 
while the other roots are due to higher-order harmonics 
which  normally  die  out if  the reactor is critical and can  
 

hence be neglected. Fig. 2 shows the complete 
normalized flux profiles of Natural Uranium/graphite 
system. It was observed that within the core, the 
magnitude of fast flux is greater. This was attributed to 
the high thermal absorption cross-section and low 
scattering cross-section of the core material. The 
implication of this is that more thermal neutrons were 
absorbed while less fast neutrons were scattered in the 
thermal group. In the reflector, the reverse was the case 
as the magnitude of thermal flux was greater than the 
magnitude of fast flux.   

 

Fig. 1. Graph of negative determinant function. 

 

Fig. 2. Normalized flux profiles. 
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This change was attributed to high scattering cross-
sections and low absorption cross-sections of reflector 
material as more fast neutrons that leak from the core 
were thermalized in the reflector.  

B. Results using Response surface methodology  
The result of the effect of four input parameters: 

diffusion length, age-thermal, fast diffusion coefficient, 
and thermal diffusion coefficient in the core on the 
critical size of the reactor using RSM is shown in Fig. 3. 
The maximum critical size obtained was 213 cm which 

corresponds to �_O = 1, �' = −1, ��' = −1, ��O = 1
 as 
shown in Table 3.  

Table 4 shows the summary of the ANOVA after 
terms with higher P-value (terms that were not 
statistically significant) have been removed in order to 
improve the accuracy of the model. The model F- and 
P- values are 4563.50 and < 0.0001, respectively, which 
are similar to results obtained in [14]. In addition, the 
entire input variables �_O , �' , ��' and ��O
 and some 

interactions between them �_O�' , _O��' , _O��O  and _O� 
 
were all significant to the critical radius.  

                  

Fig. 3. Normalized plot of residual. 

Table 3: The levels of the factors and the result of the critical size of the reactor.                                           

Run LC τC D1C D2C (Rcritical) 

1 -1 -1 -1 -1 186.4 

2 1 -1 1 -1 183.2 

3 -1 1 -1 -1 190 

4 1 1 -1 -1 187 

5 -1 -1 1 1 210 

6 0 0 0 0 185 

7 -2 0 0 0 193 

8 -1 1 1 1 202 

9 1 1 -1 1 169 

10 -1 -1 -1 1 205 

11 1 -1 -1 -1 190 

12 0 0 0 0 201 

13 1 1 1 1 175 

14 0 0 -2 0 190 

15 -1 1 -1 1 167.5 

16 0 0 0 -2 177.5 

17 0 -2 0 0 201 

18 -1 -1 1 -1 178.5 

19 0 0 0 0 180 

20 0 0 0 0 198 

21 1 -1 -1 1 213 

22 2 0 0 0 189.6 

23 0 0 2 0 192 

24 0 0 0 2 197.5 

25 1 -1 1 1 190 

26 1 1 1 -1 212.7 

27 0 0 0 0 190 

28 0 2 0 0 172 

29 0 0 0 0 190 

30 -1 1 1 -1 194.4 
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Table 4:  Result of ANOVA. 

Source 
Sum of 

Squares 
df Mean Square F-value p-value 

Model 4180.72 9 464.52 5285.41 < 0.0001 

A-diffusion length in core 2827.51 1 2827.51 32171.74 < 0.0001 

B-age-thermal in core 911.43 1 911.43 10370.40 < 0.0001 

C-fast diffusion coefficient in core 95.60 1 95.60 1087.75 < 0.0001 

D-thermal diffusion  coefficient in 
core 

341.26 1 341.26 3882.90 < 0.0001 

AB 0.6006 1 0.6006 6.83 0.0166 

AC 1.05 1 1.05 11.95 0.0025 

AD 1.50 1 1.50 17.07 0.0005 

A² 1.29 1 1.29 14.72 0.0010 

Residual 1.76 20 0.0879   

Lack of Fit 1.76 15 0.1172   

Pure Error 0.0000 5 0.0000   

Total 0.066 29    

R
2
 = 0.9992,   adj –R2 – pre –R2 = 0.0005,   adeq Precision = 266. 

Furthermore, the model R-squared value was 0.9996, 
and the difference between the adjusted sum of square 
(Adj-R

2
) and predicted sum of square (Pred R

2
) was 

0.0005. The former indicates that 99.96% of the total 
variance in the critical size data can be explained by the 
model while the latter represents the suitability of the 
model as the value is less than 0.2 [15]. The regression 
model obtained for the critical radius is given as: c.oL�L.���_O , �' , ��' , ��'
 = 190.05 + 10.85_O + 6.16�O − 2.00��O − 3.77��O − 0.194_O�' + 0.256_'��O − 0.306_'��O + 0.21_O�                                                               �38
 

This equation is valid for 

 
12.64 cm ≤ _O ≤ 18.96cm; 291.2 cm� ≤ �' ≤ 436.8 cm�; 0.888 cm ≤ ��' ≤ 1.33cm; 0.7104 cm ≤ ��' ≤ 1.0656 cm. 
C. Sensitivity analysis  

Sensitivity analysis is basically used to measure the 
effect of each variable on the output variable under 
certain conditions. This is achieved by taking the partial 
derivative of the regression models with respect to input 
variables. The positive value of the sensitivity connotes 
an increment in the output variable with respect to 
increment in the input variable, while a negative value 
implies the opposite [16, 17]. The partial derivative of 

the critical size with respect to the four input variables 
are given in Eqns. (39), (40), (41), and (42). �c.oL�L.�����O = −3.77 − 0.306_O                                                  �39
 �c.oL�L.���_O = 10.85 − 0.194�' + 0.256��O − 0.306��O+ 0.42_O                                                   �40


 
∂c.oL�L.����' = 6.61 − 0.194_O                                                      �41
 �c.oL�L.�����O = −2.00 + 0.256_O                                                 �42


 
Table 5 shows the sensitivity of the input variables on 
the critical radius �c.oL�L.��
. The results show that 
diffusion length �_'
 at �_O = 2�' = −1, ��O = 0, ��O =1
 has the highest sensitivity among the four 
parameters, followed by age-to-thermal ��'
 at �_O =−2�' = −1, ��O = 0,  ��O = 1
, thermal diffusion 
coefficient ���'
 at �_O = −2�' = −1, ��O = 0, ��O =1
, and lastly, fast diffusion coefficient ���O
 at �_O =−2�' = −1, ��O = 0, ��O = 1
.  
 
 

Table 5: Sensitivity analysis of critical radius. 

Variables Sensitivity 
L            �'     ��'     ��' L �' ��'    ��' 

-2 -1 0 1 9.9048 6.548 -2.512 4.6836 

-1 -1 0 1 10.3214 6.354 -2.256 4.3776 

0 -1 0 1 10.738 6.16 -2 4.0716 

1 -1 0 1 11.1546 5.966 -1.744 3.7656 

2 -1 0 1 11.5712 5.772 -1.488 3.4596 

1 -2 -1 0 11.3986 5.966 -1.744 3.464 

1 -1 -1 0 11.2046 5.966 -1.744 3.464 

1 0 -1 0 11.0106 5.966 -1.744 3.464 

1 1 -1 0 10.8166 5.966 -1.744 3.464 

1 2 -1 0 10.6226 5.966 -1.744 3.464 

0 1 -2 -1 10.45 6.16 -2 3.4684 

0 1 -1 -1 10.706 6.16 -2 3.4684 

0 1 0 -1 10.962 6.16 -2 3.4684 

0 1 1 -1 11.218 6.16 -2 3.4684 

0 1 2 -1 11.474 6.16 -2 3.4684 

-1 0 1 -2 11.3014 6.354 -2.256 3.4728 

-1 0 1 -1 10.9954 6.354 -2.256 3.7744 

-1 0 1 0 10.6894 6.354 -2.256 4.076 

-1 0 1 1 10.3834 6.354 -2.256 4.3776 

-1 0 1 2 10.0774 6.354 -2.256 4.6792 
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Furthermore, three of the parameters: Thermal diffusion 
length, age-to-thermal, and thermal diffusion coefficient 
have positive sensitivity while fast diffusion coefficient 
has negative sensitivity. 

IV. CONCLUSION 

In this paper, a Matlab app called TOWN-2GROUP was 
developed based on two group diffusion theory in a 
spherical coordinate to evaluate the critical radius and 
flux profile in a spherical reflected reactor. Response 
surface methodology (RSM) was also used to study the 
effect of four nuclear data parameters on the critical size 
of the reactor. The results show that all of the four input 
parameters and some of their interactions are 
statistically significant to the critical radius. Furthermore, 
the sensitivity analysis showed that diffusion length, 
age-to-thermal, and thermal diffusion coefficient have 
positive sensitivity while fast diffusion coefficient has 
negative sensitivity to the critical radius. Lastly, diffusion 
length was found to be the most sensitive parameter 
amongst the four.  

V. FUTURE SCOPE 

Higher group diffusion equations that are higher than 
two will be considered in future works as they will give a 
better approximation than the two–group diffusion 
equation which we employed in this work. Also, other 
reactor geometries will also be considered. 
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